SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone
نویسندگان
چکیده
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target.
منابع مشابه
Bcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: role in oxidant-mediated cell death.
RATIONALE Modulation of the activity of sarcoendoplasmic reticulum calcium ATPase (SERCA) can profoundly affect Ca(2+) homeostasis. Although altered calcium homeostasis is a characteristic of cystic fibrosis (CF), the role of SERCA is unknown. OBJECTIVES This study provides a comprehensive investigation of expression and activity of SERCA in CF airway epithelium. A detailed study of the mecha...
متن کاملRelation of exaggerated cytokine responses of CF airway epithelial cells to PAO1 adherence
In many model systems, cystic fibrosis (CF) phenotype airway epithelial cells in culture respond to P. aeruginosa with greater interleukin (IL)-8 and IL-6 secretion than matched controls. In order to test whether this excess inflammatory response results from the reported increased adherence of P. aeruginosa to the CF cells, we compared the inflammatory response of matched pairs of CF and non C...
متن کاملAdherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions.
Persistent presence of PMN in airways is the hallmark of CF. Our aim was to assess PMN adherence, percentage of apoptotic airway PMN (aPMN), and IL-6 and IL-8 production when aPMN are in contact with airway epithelial cells. Before coculture, freshly isolated CF aPMN have greater spontaneous and TNF-alpha-induced apoptosis compared with blood PMN from the same CF patients and from aPMN of non-C...
متن کاملSynergism between interleukin (IL)-17 and Toll-like receptor 2 and 4 signals to induce IL-8 expression in cystic fibrosis airway epithelial cells.
Cystic fibrosis (CF) is the most common lethal inherited disorder and is caused by mutations in the gene encoding the CF transmembrane regulator (CFTR). The CF lung expresses a profound proinflammatory phenotype that appears to be related to a constitutive hypersecretion of interleukin (IL)-8 from airway epithelial cells in response to microbial infection. Since overproduction of IL-8 in CF con...
متن کاملManuscript # Blue-200206-627OC.R1 Inflammatory Response in Airway Epithelial Cells Isolated from Patients with Cystic Fibrosis
The concept that inflammatory gene expression is dysregulated in airway epithelial cells from patients with cystic fibrosis (CF) is controversial. To systematically examine this possibility, responses to inflammatory stimuli were compared in CF airway epithelial cell lines without versus with wildtype CF transmembrane conductance regulator (CFTR) complementation, and in tracheobronchial epithel...
متن کامل